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ABSTRACT. An important question in the study of the evolution of dispersal is what kind
of dispersal strategies are evolutionary stable. This work is motivated by recent work of
Cosner et al. [9], in which they introduced a class of ideal free dispersal kernels and found
conditions suggesting that they determine evolutionarily stable dispersal strategies. The
goals of this paper are to introduce a more general class of ideal free dispersal kernels and
further to show that such ideal free dispersal strategies are indeed evolutionary stable. Our
work also extends some recent work on the evolutionary stability of ideal free dispersal for
reaction-diffusion equations and patch models to nonlocal dispersal models.
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1. Nonlocal dispersal models

Spatially explicit population models in continuous time traditionally have been formulated
in terms of reaction-diffusion equations [4] or analogous discrete-diffusion systems [5]. In
recent years there has been considerable interest in models where the dispersal process is
described by a nonlocal integral operator; see for example [2, 9, 12, 18, 19, 21, 23, 24, 29, 30].
A problem of particular interest in spatial ecology is that of determining which dispersal
strategies are likely to evolve and persist; see [1, 5, 6, 7, 9, 17, 20, 21, 23, 25, 26]. A class
of strategies that have been found to be evolutionarily stable in various-contexts are those
that lead to an ideal free distribution of the population; see [1, 5, 6, 7, 9]. (An ideal free
distribution of a population is the distribution that would arise if all individuals were able
to locate themselves so as to optimize their fitness. In mathematical models, that situation
is characterized by the population having a stable equilibrium distribution where fitness is
equal in all locations and where there is no net movement at equilibrium; see for example
[5, 6, 9].) The present work is motivated by recent work of Cosner et al. [9], in which they
introduced a class of ideal free dispersal kernels and found conditions suggesting that they
determine evolutionarily stable dispersal strategies. The goals of this paper are to introduce
a more general class of ideal free dispersal kernels and further to show that such ideal free
dispersal strategies are indeed evolutionary stable.

A dispersal strategy is evolutionarily stable with respect to a second strategy if a resident
species using the first strategy can resist invasion by a small population of mutants using
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the second strategy. Mathematically, this situation can be studied by formulating a com-
petition model for the two populations and determining the stability of the single-species
equilibrium where only the resident species is present. Suppose that some resident species
adopts an ideal free dispersal strategy and assume that a mutant, which adopts a non-ideal
free dispersal strategy, tries to invade when rare. Linearized stability analysis reveals that
the dominant eigenvalue of the corresponding linear eigenvalue problem is zero; i.e., one has
neutral stability here and cannot even conclude from the local stability analysis whether the
mutant can or cannot invade. In this paper we will construct some Lyapunov functionals
which help establish the global asymptotic stability of the single-species equilibrium for a
resident species using an ideal free strategy in competition with an invading population using
any non-ideal free strategy.

Our work in this paper extends some recent work on the evolutionary stability of ideal free ..
dispersal for reaction-diffusion equations [1, 6] and patch models [7] to nonlocal dispersal
models. A new difficulty for nonlocal dispersal models is the loss of compactness of solution
trajectories and we apply some new ideas from [18] to overcome such difficulty.

1.1. Single species model. Cosner et al. [9] proposed the single species model
0D w= [ EEu @t [ FodtunE -, s€0,t>0,
Q Q

where we assume that m > 0 in §) and is non-constant. We also assume that @ ¢ RV is
bounded, that m € C(Q), and that k* is non-negative, k* € C(Q x Q) and that for some
§ >0, k*(z,y) >0 for |z —y| < 0.

Definition. We say that k*(z,y) is an ideal free dispersal strategy if

(1.2) /Qk*(as,y)m(y) dy = m(:c)/ﬂlc*(y,:c) dy, ze€Q.

Note that m(z) is a steady state of (1.1) if and only if &* satisfies (1.2). In particular, if
m(z) is a steady state of (1.1), the population distribution of the single species at equilibrium
is ideal free; i.e., the fitness of the species, which is given by m —u, is equal to zero across the
whole habitat Q. This explains why it makes sense to refer to k* as an ideal free dispersal
strategy.

1.2. Competing species. Following Cosner et al. [9], we propose to investigate the two-
species competition model

U = / E*(z,y)u(y, t) dy — u(z,t) / k*(y, ) dy + u[m(z) — u — 9],
Q )

(= /Qk(a:,y)v(y,t) dy —v(z,t) /Q k(y, z) dy + v[m(z) — u — v],

where we assume that k and k* are non-negative, k, k* € C(Q x ) and that for some ¢ > 0,
k(z,y) > 0 and k*(z,y) > 0 for |z —y| < 6.

(1.3)

Our first main result is

Theorem 1. Suppose that both k* and k are continuous and positive in QxQ, k* is an
ideal free dispersal strategy and k is not an ideal dispersal strategy. Then, the steady state

(m(z),0) of (1.3) 4s globally asymptotically stable in the C(Q2) x C(§2) norm relative to all
positive and continuous initial data.
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Remark 1.1. If k is also an ideal free dispersal strategy, system (1.3) has a continuum of
positive steady states in the form of the 1-parameter family {(u,v) = (sm, (1 —s)m) : 0 <
s < 1}, as both species are using ideal free dispersal strategies. When this occurs, the steady
states {(u,v) = (sm,(1 —s)m) : 0 < s < 1} are not locally asymptotically stable among
positive continuous initial data.

Our second main result is the following integral inequality, which not only plays a crucial
role in the proof of Theorem 1 but is of independent interest.

Theorem 2. Let h : 0 x Q — [0,00) be a continuous non-negative function. Then the
following two statements are equivalent:

(1) / z,y)dy = / h(y,z)dy for all z € Q.

(i //h da:dy>//hxyda:dyforallf€0( ) with f(z) > 0 on Q.

If we further assume that h(z,y) + h(y,z) does not vanish on any open set of Q0 and
Jo Mz, y)dy = [ h(y,z)dy for all z € Q, then

//hxy da:dy——// (z,y) dz dy

holds for f € C(Q) and f(z) > 0 in Q if and only f is a constant.

This paper is organized as follows: We first present some technical preliminaries in Section
2. In Section 3, we construct a Lyapunov functional for system (1.3). Theorems 1 and 2 are
established in Sections 4 and 5, respectively.

2. Technical preliminaries

Since operators of the form
(21) (k) ) = | ¥ (e, 9)uls)dy

are bounded on C(£), the models (1.1) and (1.3) can be viewed as ordinary differential
equations on the Banach spaces C(Q) and C(Q) x C(§) respectively, so the existence of a
unique local solution for any given initial data in those spaces follows from the contraction
mapping principle. To establish global existence all that is needed is to show that on any
finite time interval solutions remain bounded, because as long as they remain bounded they
can be continued forward in time. We are interested only in nonnegative solutions. To
see that solutions with nonnegative initial data remain nonnegative and bounded we can use
results on monotonicity together with super-solutions and sub-solutions. Suppose that u(z,t)
is continuous on [0, T") x § and differentiable with respect to t. We say u is a super-solution
(sub-solution) of (1.1) if

(2.2) u(z,t) > ( /A*a:y Ju(y, t) dy — u(z, t) /k* (y,z) dy + u[m(z) — uJ

on [0,T) x . We have
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Lemma 2.1. If uy and uy are respectively a super-solution and a_sub-solution of (1.1) on
[0, T) x Q2 with us (z,0) > ug(z, 0) then uy (z,t) > ua(z,t) on [0, T) x . If us (2o, 0) > ug(z0,0)
for some xg € Q then u(z,t) > us(z,t) on (0,T) x L.

Lemma 2.1 follows from the arguments used to prove Theorems 2.1 and 3.1 of [23], which
in turn are partly based on the arguments used to prove Proposition 2.4 of [22]. See also
[29], Proposition 2.1. The detailed assumptions on the structure of k*(z,y) in those results
are slightly different from ours but the proofs are still valid in our case. Related results
have been obtained by various other authors. Once this comparison principle for a single
inequality is available, a corresponding result for the competition system (1.3) follows by
using arguments analogous to those used in the case of reaction-diffusion systems to obtain
a comparison principle for competitive systems from the one for a single equation. In the
context of competition, an appropriate ordering for comparing (u1,v1) and (ug,vz) is given
by

(2.3) (u1,v1) > (ug,v2) <= Uy 2> ug and v; < vy,

For the system (1.3) we say that (u,v) is a super-solution (sub-solution) on [0,T) x Q if

w > (<) /Q K (2, )y, £) dy — u(z, 1) /g K (y,2) dy + ulm(z) —u — 1],

\%

(2.4)
0 < () /Qk,(:c,y)v(y,t) dy — v(z, 1) /Qk(y,:c) dy + vlm(z) — u — 0]

on [0,T) x Q. We have

Lemma 2.2. If (uy,v;) and (ug,v;) are respectively a super-solution and a sub-solution of
(1.3) on [0,T) x  with (ui(z,0),1(z,0)) > (ua(x,0),va(x,0)) in the sense of (2.3) then
(uy(z, 1), v1(z, 1)) > (uz(z,t),v2(z,t)) in the sense of (2.3) on [0,T) x Q. If uy(z0,0) >
usg(z, 0) for some zo €  then ui(z,t) > u(z,t) on (0,T) X Q. If v1(zg,0) < vp(zg,0) for
some g € {1 then v;(z,t) < va(z,t) on (0,T) x €.

A result that includes a version of Lemma. 2.2 is given in [18], Proposition 3.1. The proof
is based on the single-equation comparison principle and is very similar to the proof of the
corresponding result for reaction-diffusion models for competing species so we omit it.

The comparison principles have various implications. Global existence for solutions of
(1.1) follows from the fact that 0 is a sub-solution and any sufficiently large constant is a
super-solution on [0,T) x  for any T > 0. Similarly, global existence for solutions of (1.3)
follows from the fact that for any sufficiently large constant C the pairs (C,0) and (0, C) are
respectively a super-solution and a sub-solution on [0,T) x Q for any T > 0.

A function @ = @(z) € C(Q) that is independent of ¢ but satisfies (2.2) is a super- (sub-)
solution of the equilibrium problem for (1.1); similarly a pair (@,9) € C(Q) x C(Q) that is
independent of t but satisfies (2.4) is a super- (sub-) solution of the equilibrium problem for
(1.3). A solution of (1.1) or (1.3) that is initially equal to a super-solution (sub-solution)
of the corresponding equilibrium problem for (1.1) or (1.3) will decrease (increase) relative
to the appropriate ordering. This follows from the comparison principles exactly as in the
reaction-diffusion case. For example, if @ is a super-solution to the equilibrium problem for
(1.1) then by Lemma 2.1 the solution u of (1.1) with u(z,0) = @ satisfles u(z,?) < @, with
strict inequality unless % is an equilibrium of (1.1). Note that for any 7 > 0, we have that
u(z,t + 7) is a solution of (1.1) with initial value u(z,7) < %(z) = u(z,0), so by Lemma 2.1
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we have u(z,t +7) < u(z,t) with strict inequality if @ is not an equilibrium. Hence, u(z,t)
is decreasing, as claimed. The analogous results for other cases follow in the same way.

If it is possible to obtain a positive sub-solution for (1.1) then the existence, uniqueness, -
and global stability of a positive equilibrium u* follow from the arguments used to prove
Theorem 3.2 of [23]. (It follows that (u*,0) is a semi-trivial equilibrium of (1.3).) Related
results on the existence, uniqueness, and stability of equilibria in single-species models are
given in [2, 12, 21].

In the reaction-diffusion case it is often possible to construct super- or sub-solutions from
the eigenfunctions associated with the principal eigenvalues of related linear problems. How-
ever, there are some delicate issues relative to the existence of eigenfunctions in the nonlocal
case. Consider the eigenvalue problem

(2.5) / E (2, 9)0(y) dy — o(z) /Q K(y,2) dy + a(2)p(z) = Mp(z).

Let
Z/k*(y’:U) dy
Q

For 2 ¢ R¥, the eigenvalue problem (2.5) is guaranteed to have a principal eigenvalue with
a positive eigenfunction only if ¢(z) = —b(z) + a(z) has a global maximum at some point
zo € €, and 1/(c(zo) — c(z)) ¢ L}(Q). That will be true if ¢(z) € CV(Q) when N = 1,2 but
requires the additional condition that all derivatives of c(z) of order N — 1 or less vanish at
zg if N > 3. See [10], Theorems 1.1 and 1.2, [18] Theorem 2.6, and the counter-example in
section 5 of [10]. However, it turns out that we can construct an arbitrarily small positive
sub-solution for the equilibrium problem for (1.1) under the original assumptions stated
just after (1.1). By the hypotheses on £* we have b( ) > 0 on Q. It follows from the
Krein-Rutman theorem that the operator

%5 /Q k*(z,y)u(y) dy

on C(Q) has a principal eigenvalue u > 0 with eigenfunction 9 > 0. The eigenvalue problem
for L is equivalent to

(2.6) /k* z, Y)Y (y) dy — p(z /k* Y, T =0,

Integrating (2.6) over 2 shows that 4 = 1. Assume that 1 is normalized by ||%||e = 1 and
let u = etp. It follows that

/mm V)uly, £) dy — u(z, 1) /A (3, ) dy + ulm(z) — 1] = eplm — ),
Q

so u is a sub-solution to the equilibrium problem for (1.1) for any sufficiently small € > 0.
It then follows from the arguments used to prove Theorem 3.2 of [23] that (1.1) and the
corresponding model with k* replaced by k will each have a unique globally attracting positive
equilibrium.
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3. A Lyapunov functional

For any u,v € C(Q) with > 0 in { and v > 0 in Q, define

E(u,v) := /Q {u(m) —m(z) — m(z)in u(x)} + /S;v(:v) dz.

m(z)

It is easy to check that if u > 0in (0, then E(u,v) > 0 for any (u,v) # (m,0) and E(m 0) =
0. That is, E attains its global (unique) minimum at (u,v) = (m,0) in C(Q) x C(Q).

Lemma 3.1. Let (u(z,t),v(z,t)) be a positive solution of (1.3). Set V(t) = E(u(z,t),v(z,1)),
i.e. :

V() = /Q [u(x,t) — m(z) + v(z, ) wm(m)zn%] d

= | Im@) —u(e) = ole, ) de

([ et an- [ [enas)

for every t > 0, where h(z,y) := k*(a:,y) (v).

(3.1)

Proof. By the equation of u,

—d—/u(x,t) dm=/ut(z,t) dz
(3.2) //k* z,y)u(y,t) dz dy — //Qk*(y,m)u(a:,t)dmdy%—_/Qu[m—u~v]dm
/Q m — u — v|dz.

Similarly, we have

(3.3) adz/;zv(m,t) da:=/ﬂv[m—u~v} dez.

Finally we have

d/m Jinu(z,t)d / ()ut(xt)d
//k*my (y,t) xt //m Yk (y,z dmdy—i—/m —u — ).

Since k*(z,y) = h(z,y)/m(y), then

2 / m(:c)lnu(:c,t)dm
u(z,t)
//hmy ytdmdy //hmydxdy+/m —u — .

Adding up equations (3.2) and (3.3) and subtracting (3.4), we see that (3.1) holds. I

(3.4)
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Lemma 3.2. Suppose that k*(z,y) is an ideal free dispersal strategy, continuous in OxQ,
and k*(z,y) + k*(y,z) does not vanish on any open set of Q x Q. Then dV/dt < 0 for
t > 0. Moreover, dV/dt(to) = 0 for some tq if and only if u(z,to) = som(z) and v(z,to) =
(1 — so)m(z) in Q for some so € (0,1]. '

Proof. Let h(z,y) = k*(z,y)m(y). It follows from Theorem 2 that

(3.5) //h m( ;Z;)tddy // (z,y)dzdy > 0

for any ¢t > 0. Hence, it follows from (3.1) and (3.5) that dV/dt < 0. If dV/di(ts) = O
for some tg, then from (3.1), (3.5) and Theorem 2 that m(z) — u(z, to) — v(z,tp) = 0 in O
and m(z)/u(z,to) is a positive constant. Therefore, u(z,tp) = som(z) for some so > 0 and
v(z,tp) = (1 — sp)m(z). Note that sp < 1 since v > 0. O

4. Global convergence

The goal of this section is to establish the global convergence result Theorem 1. The
proof of Theorem 1 is divided into several steps. Throughout this section we assume that
all assumptions in Theorem 1 hold.

We first collect a few results on qualitative properties of solutions to scalar equations. Let
v, denote the unique positive solution of the following nonlocal equation:

(4.1) /Qlc(z,y)v*(y) dy — vi(z) /Q k(y,z) dy + vim(z) —v] =0 in Q.
Lemma 4.1. v, # m and
(4.2) /Q vu(m — v.) = 0.

Proof. If v, = m, by (4.1) we see that

[ b vymis)dy - miz) [ Hy2)dy=0 g,
Q Q

which contradicts our assumption that k is not an ideal free dispersal strategy. To establish
(4.2), we integrate the equation of v, in {2 to obtain

(4.3) /Qv*(v*~m):/s;/nk(x,y)v*(y) da:dyw/Q/Qk(y,:c)v*(a:) dz dy = 0.

Lemma 4.2. Let u(z,t) be a positive solution of
(14 w= [ Kl dy—u(o ) [ K dy+ uimiz) —
Q

with w(z,0) < (1 +n)m(z) for all z € Q, where n is some non-negative constant. Then
w(z,t) < (L+n)m(z) for anyt > 0 and z € Q. If further assume that u(z,0) # (1+n)m(z),
then u(z,t) < (1 +n)m(z) for any t >0 and z € 0.
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Proof. Note that u,(z) := (1 +n)m(z) is a super-solution of (4.4) as

/ k*(z, y)un(y) dy — un(z) / k*(y, z) dy + unlm(z) — uy] = —n(1 +n)m(z) <0
Q Q

in , where we used the identity (1.2). By the comparison principle for single equations we
see that for any z, u(z,t) is monotone decreasing in ¢. In particular, u(z,?) < u(z,0) =
(1 -+ n)m(z). If further assume that u(z,0) # (14 n)m(z), then u(z,t) is strictly monotone
decreasing in ¢, which implies that u(z,t) < (1 +n)m(z) for any t >0 and z € Q. o

The stability of the semi-trivial steady state (0,v.) is determined by the principal eigen-
value, if it exists, of the linear eigenvalue problem

(4.5) /ﬂ k(2. 5)(y) dy — () /Q K (v, 7) dy + (m — v.)p(a) = Ap(a).

However, it is unclear whether this linear eigenvalue problem has a principal eigenvalue. To
overcome this difficulty, we adopt an idea of Hetzer et al. [18] and first perturb the potential
function — fQ k*(y, ) dy+m—v, as follows: For any € > 0, we can always find some function
¥ € CN(Q) such that

(4.6) ~/k*(y,m)dy+m—v*§l:§—/k*(y,m)dy—km—m%—e in Q,
Q Q

and there exists some z € € such that [*(zg) = maxg ! and the partial derivatives of [
at zo up to N — 1 order are zero. By Proposition 2.6 of Hetzer et al. [18], the (perturbed)
linear eigenvalue problem

(47) /ﬂ ¥ (2, 9)0(y) dy + 1 (@)p(z) = Ae(z)

in 1 has a principal eigenvalue, denoted by A, such that the corresponding eigenfunction
(denoted as ) can chosen to be positive in Q) and is uniquely determined by maxg @, = 1.
If we let

(@) = @)+ [ K2 dy
Q
then
(4.8) m—uv, <le<m—v"+¢€ in{Q,

and (4.7) is equivalent to

(4.9) / ¥ (2, )o) dy — p(z) /Q K (y,2) dy + Lep(w) = Nol2).

The following lower bound of A, which is independent of ¢, plays an important role in
later analysis:

Lemma 4.3. The eigenvalue A satisfies

Jo(m —v.)?

0.
Jom g

Ae >
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Proof. To establish Lemma 4.3, we divide the equation of @, by @.(z)/m(z) and integrating
in Q with respect to z, we have

(4.10) }\/ //A*J;y x)/mi dy — //k* Y, T :E)da:dy—}—/nlem.

By the assumption on £* and Theorem 2,

(4.11) //k* T,Y)m Eyg //A* y, z)m(z) dzdy.

Hence, by (4.2), (4.8), (4.10) and (4.11),
Ae /m>/lm
— [m—u)+ [ mite=(m—w)
z/ﬂ(m—v"‘)2

>0
where the last inequality follows from v, # m. [
Let § be any positive constant satisfying 6 < €. Set (4(z), 7(z)) = (6pe(z), (1 + €)vs(z)).
Lemma 4.4. If e satisfies

. fom—v) 1
(4.12) O0<e< om 2t ol

then (1, 0) satisfies
05 [ k) dy - () [ £(y.5)d+imie) - 5-9)

(4.13)
O>/ka:y y)dy — (= )Lk(y,m)dy+f1[m(a:)~ﬂ—fz]
for any z € §2.

Proof. The second inequality of (4.13) follows immediately from the equation of v, and the
positivity of . For the first inequality of (4.13), it follows from the definition of A that

(4.14) /ﬂ’»@ y)a(y) dy — i(z) /Q k*(y, z) dy + i[m(z) — @ — 9]
 Sipe ([ — e — L] + A — Gpe — €v.)

Since m — v, — L. > —¢, 6 < € and ||@elloo = 1, by Lemma 4.3, which is applicable due to
equation (1.2), we have

/A*:cy y)dy — u(z /k*y, Y dy + @lm(z) — 4 — 7]
(415) > g (B2 - e ..
Q
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where the last inequality follows from (4.12). O
Let (u(z,t),7(z,t)) be the solution of

w= [ BEuddy - o) | F.e)d+um(z) - u-),
Q Q

mo= [ ko yolu,t) dy — (o) | Fy,2)dy +im(a) ~u—7),
Q Q

u(z,to) = 0pe(z), U(z,to) = (14 €)vu(z),
where ty > 0 is a constant which will be chosen later.

(4.16)

Lemma 4.5. For z € Q and t > t, u(z,t) is monotone increasing in t and T(z,t) is
monotone decreasing in t. Moreover, as t — oo, u(z,t) — m(z) and v(z,t) — 0 in C(Q)
norm.

Proof. By Lemma 4.4 and the comparison principle for system (1.3), we see that u(z,t)
is monotone increasing in ¢ and v(z,t) is monotone decreasing in t. Since u is uniformly
bounded from above and T > 0, we see that as ¢ — oo, u — u* and 7 — v* for some
bounded measurable functions v* and v*, and u* > §p, > 0in {2 and v* > 0 in Q.

For t > tg, define

= /n [’W’ t) =m(z) +3(z,1) ~ m(z) In iﬁx?] dz.

Since u — u* and T — v*, by (3.1) we see that

llmﬂw—/[vn(m)—u —v*dz

t—oo dt
<//hmy ;Z*;dxdy //ho:y dmdy)

where h(z,y) := k*(z,y)m(y). By Theorem 2

(4.18) //h /U*Eyi dz dy — /Q-/Qh(a:,y) dz dy > 0.

Therefore, the right hand side of (4.17) must be non-positive. We claim that the right hand
side of (4.17) must be equal to zero: if not, there exist some positive constants § and T' such
that dV/dt < —¢ for any ¢t > T. This, however, contradicts V() > 0 for all ¢ > T". Hence,
we have

(4.19) /Q [m(z) —u* — "> =0

and

(4.20) //h Ey; dx dy — /Q/Qh(m,y)da:dyso.

By Theorem 2, (4.20) holds if and only if w*(z)/m(z) is a constant function in . By (4.19),
u* + v* = m ae. in Q. Therefore u* = Tm and v* = (1 — 7)m for some constant 7. Since
u* > 0 and v* > 0, we see that 0 < 7 < 1. Note that v* satisfies

/ k(z,y)v*(y) dy — v*(z) / k(y,z)dy + v*[m(z) —u* —v*] =0 in Q.
Q Q

(4.17)
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By u* + v* = m and v* = (1 — 7)m, we have

(1—7) {/Q k(z,y)m(y) dy — m(z) /Q k(y, z) dy:l =0 in{.

Since k(z,y) is not an ideal free dispersal strategy, i.e.,

/ k(z,y)m(y) dy — m(z) / k(y,z)dy #0 inQ,
Q Q

we see that 7 = 1. That is, (u*,v*) = (m,0). Therefore, u(z,t) — m and v(z,t) — 0
pointwise in z as ¢t — oco. As m(z) is continuous, we see that these monotone convergences
are uniform for z € §2. O

Let u(z,t),v(z,t) denote a solution of (1.3) with continuous positive initial data.

Lemma 4.6. For any € > 0, there ezists some T, 3> 1 such that v(z,t) < (14 €)v, for any
t > T., where v, is the unique positive solution of (4.1).

Proof. Since u(z,t) > 0 for all ¢, from (1.3) we see that v(z,t) satisfies

(4.21) v < / k(z,y)v(y,t)dy — v(z,t) / k(y,z) dy + vim(z) — v].
Q Q
Let w(z,t) denote the unique solution of
(4.22) wy = / k(z,y)w(y,t)dy — w(m,t)/ k(y,z) dy + wim(z) — w)
Q Q

with the initial condition w(z, 0) = v(z,0). By the comparison principle, v(z,t) < w(z,t) for
all z €  and ¢ > 0. Since w(z,t) — v, in C(Q) as t — oo, we see that for any e > 0, there
exists T, such that w(z,t) < (1 + €)v, for any ¢t > T,, which implies that v(z,t) < (1 +€)v.
for any t > T.. 0

Proof of Theorem 1. We first establish the global convergence of u(z,t), v(z,t) ast — oo.
Let (u(z,t),7(x,t)) be the solution of (4.16) with to = T¢, where T; is given in Lemma 4.6.
Let § be any positive constant satisfying 6 < min{e, infzeq u(z,Te)}. By the definition of ¢
and e,

w(z, Te) = 6pe < 6 < u(z,Te)

for any z € . By Lemma 4.6, we have
o(z, T.) = (1 + €)vi(z) > v(z, Te)

for every z € €. By the comparison principle for system (1.3), we have u(z,t) > u(z,t) and
v(z,t) < (z,t) for every z €  and ¢t > T.. By Lemma 4.5, as t — co, u(z,t) — m(z)
and B(z,t) — 0 in C(Q) norm. Hence, v(z,t) — 0 in C() norm, which implies that
u(z,t) — m(z) in C(Q) norm.

Next we show that (m(z),0) is locally stable in C(Q) x C() topology, ie., for € > 0,
there exists v = (e) < € such that if |u(z,0) — m(z)] < v and 0 < v(z,0) < 7, then
lu(z,t) — m(z)| < € and v(z,t) < € for all t > 0. To this end, let (u(=,t),7(z,t)) be the
solution of (4.16) with ¢; = 0. By Lemma 4.5, there exists some T = T"(¢) > 0 such that

(4.23) u(z,t) > m(z)—e, Bz, t)<e, VT eEQ t=>T
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By Lemma 4.2, u(z,t) < m(z) for all z € Q and t > 0 as u(z,0) < € < m(z) in {,
provided that ¢ is positive and sufficiently small. Set

, , . s ming m
v = min {rmnelg[m(o:) u(z, T, r;xelgv(m,T ), ma:mm} :

By the choice of v, if |u(z, 0) —m(z)| < v and v(z,0) < 7, then u(z,0) > m(z)—7v = u(z,T*)
and v(z,0) < v < T(z,T*). By the comparison principle for system (1.3), u(z,t) > ulz,t +
T*) and v(z,t) < T(z,t + T*) for any = and ¢ > 0. Since u(z,t) is monotone increasing
in t and T(z,t) is monotone decreasing in ¢, u(z,t) > u(z,T*) and v(z,t) < V(z,T"). This
together with (4.23) implies that for any ¢ > 0 and z € ©, u(z,t) > u(z, T*) > m(z) — ¢ and
v(z,t) <U(z,T*) < e '

Tt remains to show that u(z,t) < m(z) + ¢ for t > 0 and z € Q. By the choice of v,
if |u(z,0) — m(z)| < 7, then u(z,0) < (1 + ¢/maxgm)m(z) for z € Q. Let 4(z,t) be the
solution of

aw=/kWLyWWJﬁ@—ﬂ@J)/k%%@dy+mm@)—m, z el t>0,
Q Q

(z,0) = (1 + e/mgxm)m(z).

(4.24)

By Lemma 4.2,
(4.25) i(z,t) < (1+ e/mgxm)m(:z:), t>0.
As u(z,t) satisfles

Uy = / k*(z,v)u(y,t) dy — u(z,t) / k*(y,z) dy + ufm(z) —u — ]
(4.26) “ “

< / K (2, y)uly, £) dy — u(z, 1) / K (v, ) dy + ufm(z) — o]

for t > 0, by the comparison principle for single equations we have u(z,t) < (z,t) for z € Q
and t > 0. Hence, by (4.25) we have u(z,t) < 4(z,t) < (1 + ¢/maxgm)m(z) < m(z) + €.
O

5. A new integral inequality

We first introduce the definition of line-symmetric matrix, which is a natural generalization
of symmetric matrix. A n x n matrix A is called line-symmetric if for every 1 <7 < n, the
sum of the elements in the i-th row of 4 equals the sum of the elements in the i-th column of
A. The following result, which gives a classification of line-symmetric matrix, can be found
in Corollary 3 of [14].

Theorem 3. Let A be an n X n nonnegative matriz. Then A is line-sum-symmetric if and
only

i L
m.
(5.1) Z aij;;f > Z Qs
i,j=1 Lj=1
for all z; > 0, 1 < i < n. Moreover, if A is irreducible and line-sum-symmetric, equality in
(5.1) holds if and only if all the coordinates of x = (1, ..., T,) coincide, i.e., T; = z; for any
1<4,j<n.
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A continuous version of Theorem 3 in terms of integrals can be stated as follows.

Theorem 4. Let h: Q x § — [0,00] be a continuous Riemann integrable function. Then
the following are equivalent

(i) /hzy)dy—/h(y,a:)dyforallxeﬂ‘
(ii) //hmy dzdy>//hmy )dz dy for all f € C(Q) with f(z) >0 on Q.

Proof. The proof of (i) implies (ii) will make use of a matrix inequality for line-sum sym-
metric matrices. Suppose h satisfies (i) and f € C(Q) with f(z) > 0 on . By choos-
ing specific sample points in a partition of Q x Q, the Riemann sum approximation of
fn fQ h(z,y) dz dy can be made into a line-sum symmetric matrix and Theorem 3 can be
applied to the approximations of the double integrals in (ii). Let {;};_; be a partition of {2
and {(zi;,vs5), U x Q;}7._, be a partition of 2 x ) with sample pomts (Tij,y35) € S x Q5
chosen so that

4,j=1

1
(5.2 h(zss, Yis =———-—/ / hiz,y)dz dy.
) (4 ) 1% % Q5] Jo, Ja, (@9)
Such sample points (z;;,;;) exist for all 4,7 = 1,...,n because h is continuous. Define
(5.3) aij = h(za, Yi5) [0 x Q.

Then (i) => A = (ay;) is a line-sum symmetric matrix because

n n »
Z%"—'Z/ / h(x’y)dwdw/ /h(m,y)dmdy
i=1 i=1 ¥/l Q; /0
=/ /h(y,ax)dmdyzZ/ / h(y,m)d:cdyzz:aﬁ.
Q; /0 i=1 5 JQy i1

The Riemann sum corresponding to the first double integral in (ii) can be manipulated to
make use of Theorem 3

(5.4)

L e (e 1)
2 3o (1050 - 2).

A lower bound on the coefficient of a;; in right hand side of (5.5) follows from

f(zs) _ f(za) lf Tij) $g1) fla) f (yi5)
(5.6) f(yij) 1"]1 yl])f(le)
< F@) | f (i) = Flya)l + fysg) | f (35) = fza)
- Fyis) f(z41) '

Recall that (z;5,7:5) € S X §; 50, 35, o € € and y;5, T;1 € ;. Because f is uniformly
continuous on ), and hence bounded above and away from zero below, this quantity can be
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made arbitrarily small by choosing a sufficiently fine partition. More precisely, for all £ > 1,
there exists a hy such that

(5'7) Z Qij f k) Z Qij

1,j=1 3,J=1

for any partition of Q with |Q;| < Ay for all i. Taking the limit of (5.7) as the size of the
partition of Q goes to zero yields the integral inequality in (ii).
Now, assume h satisfies (ii). To prove (ii) == (i) it is useful to work with the function

(5.8) / / 1 + 9 i dz dy

which for any g € C(Q) is differentiable in a neighborhood of 0. Because

(5.9) G(O)z/g/ﬂh(z,y)dmdy

we have G(e) > G(0) for all € in a neighborhood of 0. Therefore a local minimum of G
occurs at 0 and hence G'(0) = 0. We can differentiate (5.8) to get

(5.10) / /h z,y) (9(z) — 9(y)) dzdy.
Therefore,
(5.11) /Q/s;g(:c)h(:c,y) dxdyz/ﬂ/ﬂg(y)h(m,y) dzdy

We can change the order of integration on the left hand side of (5.11) and relabel the right
hand side of (5.11) so that the role of z and y are changed to get

(5.12) [ s@ ([ nasar) dz = [ ot ([ hw2) ) do

Since (5.12) holds for any g € C(2) we can conclude that h satisfies (). O

Theorem 5. Let h : 2 x 2 — [0,00] be a continuous Riemann integrable function such
that h(z,y) + h(y,z) does not vanish on any open set of Q. Let f € C(S2), f(z) >0 on Q.
Furthermore, assume

/ hz,y)dy = / h{y,z)dy for all z € Q1.
Q Q
Then
//hmy da:dy—//h:cydzdy@} f is a constant.

Proof. 1t is clear that when f is a constant equality will hold. Suppose f is not a constant
but the double integrals are equal. Then define

(5.13) //h z,Y) z ggig dz dy
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which, for any g € C(Q), is a differentiable function in a neighborhood of 0 that has a local
minimum at 0. Hence, G'(0) = 0, where

) — 2. 9@ W) — W) f(z)
(5.14) G'(0) = / / Wz, 1) o dz dy.
Choosing g(z) = f(z)? in (5.14) ylelds
fz)? — f(z)f(y) _
(5.15) / / h{z,y) ) dzdy = 0.
Because

/ h(z,y)dy = / h(y,z)dy for all z € Q,
Q Q

we can show

/Q/Qh(m,y) da:dy—/f </ ha:y)dy) dz
(5.16) - / (@) < / Wy, z) dy> iz
//h Y, T dydz*//hxy f(y) dz dy.
Therefore,

(5.17) / / h(z, y —(f()m)f(y) dz dy = /Q/Qh(a:,y) (f(y) — f(z)) dedy = 0.

Adding (5.15) and (5.17) yields

(5.18) //h T y J;( z)’ dzdy =0,
and interchanging = and y in (5.18) gives

2
(5.19) //h Y, T ];( v) dz dy = 0.

If  is not constant then there must be an open set U C € x Q where (f(z) — f (y))2 > 0.
However, we know that h(z,y) + h(y,z) does not vanish on any open set so either A(z,y),
or h(y,z) must be positive on some open subset of U. Therefore (5.18) and (5.19) cannot
both be 0. This is a contradiction. O

Finally we give another application of Theorem 4. We say that A\(K) is a principal eigen-
value of the problem

(5.20) / K (z, v)p(y) dy = A(K)p(z)

if (5.20) has a solution ¢(z) which is continuous and positive in Q.

Corollary 5.1. Let K(z,y) be a posztwe contmuous function in Q x Q and MK) be a
principal eigenvalue of (5.20). If [, K(z,y)dy = [ K(y,z)dy for every x € Q, then

K)ZWL/SZI{(m,y)dmdy.
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If [ K(z,y)dy is non-constant, then

Mm>ﬁf/xwmmw

Proof. Dividing (5.20) by ¢(z) and mtegratmg in €, we have

Al = Ka:y )d:cdy> K:r;ydmdy,
o(z)

which the last inequality follows from Theorem 4. If K (m,y) + K(y,z) does not vanish on-
any open set of 2, we see that '

MM:ALK@@M@

if and only if v is a constant function, which together with (5.20) would imply that [, K (o:, y) dy
is also a constant function. This contradicts our assumption. O

Remark 5.1. Corollary 5.1 for the symmetric case K(z,y) = K(y,z) was established in
Appendix A of [16]. We thank Mark Lewis for bringing this reference to our attention.
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